

Magnet Division

Initial Studies of NSLS2 Dipole with Electromagnetic (EM) Tooth

Ramesh Gupta
Superconducting Magnet Division

Status of Design Studies of Dipole With a High Field Region

Design Goal:

- •Design should produce a desired field : 0.4 T, with a small ~1 T region.
 - Should 0.4 T be adjusted to keep the original integral field?
- Can acceptable field quality be obtained in the presence of this discontinuity?
 - Report on initial investigation.
 - This is very much work in progress.
 - Please, allow a month or so for more intelligent solutions to appear.

Computer Model of a Typical Case

Superconducting Magnet Division_

Field Profile on Magnet Axis in 100 mm Wide Pole Case

Total deflection per magnet = 6 degrees (104.7 mrad) = 0.4*2.62= 1.048 T.meter.

UNITS Length mm Magn Flux Density Magn Field $A m^{-1}$ Magn Scalar Pot Magn Vector Pot Wb m⁻¹ Elec Flux Density C m⁻² Elec Field $V m^{-1}$ Conductivity S mm⁻¹ Current Density A mm⁻² Power Force Energy

Is2-cu4-i6a2_78.op3 TOSCA Magnetostatic Nonlinear materials Simulation No 1 of 1

PROBLEM DATA

1236259 elements 211353 nodes 4 conductors

Nodally interpolated fields Activated in global coordinates Reflection in XY plane (Z field=0)

Field Point Local Coordinates Local = Global

Desired deflection in high field insert 2 mrad

Field Profile from 2.4 degrees to 2.9 degrees

Desired deflection in high field insert 2 mrad

Field Quality

Calculations of 3-d harmonics are yet to be performed.

However, some understanding can be obtained by studying the field profile.

BROOKHAVEN NATIONAL LABORATORY

Superconducting Magnet Division

Case Study of Narrower Pole (50 mm instead of 100 mm wide)

UNITS Length mm Magn Flux Density Magn Field $A m^{-1}$ Magn Scalar Pot Magn Vector Pot Wb m⁻¹ Elec Flux Density C m⁻² Elec Field $V m^{-1}$ Conductivity S mm⁻¹ Current Density A mm⁻² Power Force Ν Energy

PROBLEM DATA Is2-cu4-i5a3_1.op3

TOSCA Magnetostatic Nonlinear materials Simulation No 1 of 1 1228657 elements 210066 nodes 4 conductors Nodally interpolated fields Activated in global coordinates

Field Point Local Coordinates

Local = Global

Field in 100 mm and 50 mm wide high field poles powered with $\Delta \boldsymbol{I}$

Case Study of Narrower Pole (50 mm instead of 100 mm wide)

Field in Short (100 mm X 100 mm) Magnet

Superconducting Magnet Division_

Cutout Pole to Reduce Saturation

Superconducting Magnet Division_

Non-linear Excitation

Superconducting Magnet Division_

Wider pole.
Linear scaling
would have
raised field to 1 T.

Non-linear Excitation

Superconducting Magnet Division

Narrow pole.
Linear scaling
would have
raised field to 1 T.

